Abstract: In this study, physics-informed graph residual learning (PhiGRL) is proposed as an effective and robust deep learning (DL)-based approach for 3-D electromagnetic (EM) modeling. Extended from ...
F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, "Convolutional Neural Network Architectures for Signals Supported on Graphs," IEEE Trans. Signal Process., vol. 67 ...
MAT4750 gives an introduction to stochastic analysis and calculus for jump processes. The attention is on Levy processes as a flexible class for modelling. The course introduces continuous financial ...